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© 2021 Robert Nowak

Analysis of Soft-Thresholding

Let 8 € RP be a vector of coefficients/parameters. Suppose we observe
y=0+e€, e~N(0,5I).
The MLE of 0 is simply vy, and its mean-square error is
Elly - 0|3 = po®

However, suppose that only & of the coefficients are nonzero. If we knew which & these were, then we would
only need to estimate those. The resulting estimator €, which sets all but the %k coefficients to zero, would
have

Ely - 63 = ko

Of course, in practice we would not know which coefficients were zero. The soft-thresholding estimator is
a data-based way of deciding which coefficients should be estimated to be zero.

~

0; = sign(y;) max(|y;[ — A,0), A >0

This can perform much better than the MLE if @ is sparse or approximately sparse.
Before we analyze the soft-thresholding estimator, let us consider an ideal thresholding estimator. Sup-
pose that an oracale tells us the magnitude of each 6;. The oracle estimator is

- yi if0;]? > o?
91’ = . 2 2
0 1f|91" <o

In other words, we estimate a coefficient if and only if the signal power is at least as large as the noise power.
The MSE of this estimator is
P P
EY 167 -6 =Y min(|0;*,0?)
i=1 i=1

Notice that the MSE of the oracle estimator is always less than or equal to the MSE of the MLE. If @ is
sparse, then the MSE of the oracle estimator can be much smaller. If all but £ < p coefficients are zero, then
the MSE of the oracle estimator is at most ko?. Remarkably, the soft-thresholding estimator comes very
close to achieving the performance of the oracle, as shown by the following theorem (Theorem 1 in “Ideal
Spatial Adaptation by Wavelet Thresholding,” by Donoho and Johnstone).

The theorem uses the threshold A = /202 log p. This choice of threshold is motivated by the following
observation. Assume, for the moment, that all the coefficients are zero (i.e., §; = O fori = 1,...,p). In
this case, we should set the threshold so that it is larger than the magnitude of any of the y; (so they are all

set to zero). If we take A = \/m , then using the Gaussian tail bound and the union bound we have
P(Ui— {lyil > A}) <o
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Theorem 1. Assume the direct observation model above and let

~

0; = sign(y;) max(|y;| — A, 0)

with A = \/2021og p. Then

p
E|§ - 6]3 < <2logp+1>{02+2min<wi%%}
=1

The theorem shows that the soft-thresholding estimator mimics the MSE performance of the oracle es-
timator to within a factor of roughly 2 log p. For example, if 0 is k-sparse (with non-zero coefficients larger
than o in magnitude), then the MSE of the oracle is ko and the MSE of the soft-thresholding estimator is
at most (2logp+ 1)(k +1)0? ~ 2k log p o when n is large. This also corresponds to a huge improvement
over the MLE if 2k log p < p.

Intution: Consider the case with o2 = 1 (the general case follows by simple rescaling). First recall that if
y ~ N(0,1), then P(Jy| > \) < e~*/2 This inequality is easily derived as follows. Since P(y > \) =
P(y < —\), we only need to show that P(y > A) = 5= [\* eV 2dy < %e"\2/2. Note that

oL [ ev* 2y Lo e N2y L[ =N 2y
1,-22/2 - 1 = T :
2 5 5

The desired inequality results by making change of variable ¢t = y + A to yield

g Sy ey g f e [t
1,-22/2 o
26

N[
|
o= ®

Now observe that if A = v/2Tog p, then P(|y;| > \|0; = 0) < e~ 187 = ]%. Using this we have

E Zn{éﬁéo} - Z;gl.

7:0;=0 1:0;,=0

In other words, using this threshold we expect that at most one of the §; = 0 will not be estimated as @ =0.
Next consider cases when 6; # 0. Let’s suppose that |6;| > A, so that §; = y; — Asign(y;). In this case,

~

(0; — 91-)2 = (—€ + )\sign(yi))2 < 612 + 2|6 |\ + A2

Taking the expecation of this upper bound yields

~

E[(6; —0;)%] < 14+2 A+ X% < 3X2 41, assuming A > 1.

Thus, if € has only &£ nonzero weights, then this intution suggests that

> E[(6: - 6:)*] = O(klogp) .

=1
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This is formalized in the following proof of Theorem 1.

Proof: To simplify the analysis, assume that 0> = 1. The general result follows directly. It suffice to show
that

B[ — 0% < (2logp+1) {; T min(6?,1) }

foreachi. Solety ~ N (6,1) and let f)(y) = sign(y) max(|y|— A, 0). We will show that with A = \/21og p

1 .
El(fr(y) — 0)%] < Qlogp+1) {p + min(6%, 1) } |
First note that f)(y) = y — sign(y)(Jy| A ), where a A b is shorthand notation for min(a, b). It follows that

El(fa(y) —0)°] = E[(y—0)* — 2E[sign(y)(ly| A M) (y — 0)] + E[y* A N?]
= 1—2E[sign(y)(lyl A X)(y — 0)] + E[y*> A N?]

The expected value in the second term is equal to P(|y| < A), which is verified as follows.
The expectation can be split into integrals over four intervals, (co, —t], (—¢,0], (0,¢], and (¢, c0). Each
1 —a?/2

integrand is a linear or quadratic function of y times the Gaussian density function. Let ¢(z) := Nors

and ®(z) be the cumulative distribution function of ¢(x), and consider the following indefinite Gaussian
integral forms:

/qﬁ(m) dx = ®(x), by definition of P,

LT R D P R
/:E(;S(:E) dx m/xe dz m/e du \/ﬂe o(x),
u=—x2/2

/$2¢(m) dr = ®(z) —zo(x).

The last form is verified as follows. Let v = x and dv = x¢(x)dz. Then integration by parts [ udv =
w — [vduand [ z¢(x)dz = —¢(z) show that

/x2¢(a:) dx = x/xd)(m)da: - //x(b(m)da: = —x¢(x) +/¢($) =®(z) —zp(x) .

The Gaussian distribution we are considering has mean 6 so the shifted integral forms below, which follow
immediately from the derviations above by variable substitution, will be used in our analysis:

i) [oz—0)dr = Bz 6)
(it)  [zp(x—0)dx = 0P(x—0)— ¢(x—0)
(iii) [ 22¢(x —0)dr = (14 6*)®(x —0) — (z+ 0)p(x — 0)
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Using these forms we compute

- sign(z)(|z| AX)(z — 6) p(x — 0) dx

o0

/
_ /A Yo(z —G)dx—/ox(x—9)¢(x—9)dx

) -2

Elsign(z)(|z] AN (z = 0)] =

Ap(—A—0) B(—0)—D(—A—0)—Ap(—A—0)

A
i /0 z(z— 0)p(x — 0)da +/A Az —0)p(x — 0)dx

BA—0)—B(—0)—Ap(A—0) Ap(A—0)

= P(A—0)—P(—A—0)=P(|z| < A)

So we have shown that

E[(fa(z) —0)?] = 1-2P(|lz| < \) +E[z? A N
Note first that since 22 A A2 < A2 we have

E[(fa(z) —0)*] <1+ A =1+2logp < (2logp+1)(1/p+1).
On the other hand, since 2 A A\? < 2 we also have
E[(fa(z) —0)?] < 1—2P(jz| <A)+6*+1 = 2(1 —P(|z| < \)) + 6> = 2P(|z| > \) +6*.
The proof will be finished if we show that
2P(|z| > A) < (2logp+1)/p + (2logp)6* .

Define g(0) := 2P(|z| > \) and note that g is symmetric about 0. Using a Taylor’s series with remainder
we have

1
9(0) < (0) + 5 sup lg"16%

where ¢” is the second derivative of g. Note that g(6) = 2[1 —P(z < A —0) + P(z < —\ — 0)], where
z ~ N(0,1). Using the Gaussian tail bound P(z > \) < %e"\Q/Q and plugging in A = /2logp we
obtain g(0) < 2/p. Note that ¢’(6) = 2[p(A — 0) — ¢(—\ — 6)] and ¢’(0) = 0. The integral (ii)
above shows that the derivative of ¢(\ — 6) with respect to 6 is equal to (A — 8)p(\ — ). So we have
g"(0) = 2[(N = 0)p(A — 0) + (=X — 0)p(—A — 6)]. Tt is easy to verify that |¢”(0)| < 1. To simplify the
final bound, note that 4logp > 1if p > 2, so it follows that sup, g”(0) < 4log p for all p > 2. O



