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Analysis of Soft-Thresholding

Let ✓ 2 Rp be a vector of coefficients/parameters. Suppose we observe

y = ✓ + ✏ , ✏ ⇠ N (0,�2I) .

The MLE of ✓ is simply y, and its mean-square error is

Eky � ✓k22 = p�
2

However, suppose that only k of the coefficients are nonzero. If we knew which k these were, then we would
only need to estimate those. The resulting estimator b✓, which sets all but the k coefficients to zero, would
have

Eky � ✓k22 = k�
2

Of course, in practice we would not know which coefficients were zero. The soft-thresholding estimator is
a data-based way of deciding which coefficients should be estimated to be zero.

b✓i = sign(yi) max(|yi|� �, 0) , � > 0

This can perform much better than the MLE if ✓ is sparse or approximately sparse.
Before we analyze the soft-thresholding estimator, let us consider an ideal thresholding estimator. Sup-

pose that an oracale tells us the magnitude of each ✓i. The oracle estimator is

b✓Oi =

(
yi if |✓i|2 � �

2

0 if |✓i|2 < �
2

In other words, we estimate a coefficient if and only if the signal power is at least as large as the noise power.
The MSE of this estimator is

E
pX

i=1

|b✓Oi � ✓i|2 =
pX

i=1

min(|✓i|2,�2)

Notice that the MSE of the oracle estimator is always less than or equal to the MSE of the MLE. If ✓ is
sparse, then the MSE of the oracle estimator can be much smaller. If all but k < p coefficients are zero, then
the MSE of the oracle estimator is at most k�2. Remarkably, the soft-thresholding estimator comes very
close to achieving the performance of the oracle, as shown by the following theorem (Theorem 1 in “Ideal
Spatial Adaptation by Wavelet Thresholding,” by Donoho and Johnstone).

The theorem uses the threshold � =
p
2�2 log p. This choice of threshold is motivated by the following

observation. Assume, for the moment, that all the coefficients are zero (i.e., ✓i = 0 for i = 1, . . . , p). In
this case, we should set the threshold so that it is larger than the magnitude of any of the yi (so they are all
set to zero). If we take � =

q
2�2 log p

�
, then using the Gaussian tail bound and the union bound we have

P(
S

p

i=1{|yi| � �})  �.

1
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Theorem 1. Assume the direct observation model above and let

b✓i = sign(yi) max(|yi|� �, 0)

with � =
p

2�2 log p. Then

Ekb✓ � ✓k22  (2 log p+ 1)

(
�
2 +

pX

i=1

min(|✓i|2,�2)

)

The theorem shows that the soft-thresholding estimator mimics the MSE performance of the oracle es-
timator to within a factor of roughly 2 log p. For example, if ✓ is k-sparse (with non-zero coefficients larger
than � in magnitude), then the MSE of the oracle is k�2 and the MSE of the soft-thresholding estimator is
at most (2 log p+1)(k+1)�2 ⇡ 2k log p�2 when n is large. This also corresponds to a huge improvement
over the MLE if 2k log p ⌧ p.

Intution: Consider the case with �
2 = 1 (the general case follows by simple rescaling). First recall that if

y ⇠ N (0, 1), then P(|y| � �)  e
��

2
/2. This inequality is easily derived as follows. Since P(y � �) =

P(y  ��), we only need to show that P(y � �) = 1
2⇡

R1
�

e
�y

2
/2
dy  1

2e
��

2
/2. Note that

1
2⇡

R1
�

e
�y

2
/2
dy

1
2e

��2/2
=

1
2⇡

R1
�

e
�(y2��

2)/2
dy

1
2

=
1
2⇡

R1
�

e
�(y��)(y+�)/2

dy

1
2

.

The desired inequality results by making change of variable t = y + � to yield

1
2⇡

R1
�

e
�y

2
/2
dy

1
2e

��2/2
=

1
2⇡

R1
0 e

�t(t+2�)/2
dt

1
2


1
2⇡

R1
0 e

�t
2
/2
dt

1
2

= 1 .

Now observe that if � =
p
2 log p, then P(|yi| � �|✓i = 0)  e

� log p = 1
p

. Using this we have

E

2

4
X

i:✓i=0

1
n
b✓i 6= 0

o
3

5 =
X

i:✓i=0

1

p
 1 .

In other words, using this threshold we expect that at most one of the ✓i = 0 will not be estimated as b✓i = 0.
Next consider cases when ✓i 6= 0. Let’s suppose that |✓i| � �, so that b✓i = yi � �sign(yi). In this case,

(✓i � b✓i)2 = (�✏i + �sign(yi))2  ✏
2
i + 2|✏i|�+ �

2
.

Taking the expecation of this upper bound yields

E[(✓i � b✓i)2]  1 + 2�+ �
2  3�2 + 1 , assuming � > 1 .

Thus, if ✓ has only k nonzero weights, then this intution suggests that

pX

i=1

E[(✓i � b✓i)2] = O(k log p) .
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This is formalized in the following proof of Theorem 1.

Proof: To simplify the analysis, assume that �2 = 1. The general result follows directly. It suffice to show
that

E[(b✓i � ✓i)
2]  (2 log p+ 1)

⇢
1

p
+min(✓2i , 1)

�

for each i. So let y ⇠ N (✓, 1) and let f�(y) = sign(y)max(|y|��, 0). We will show that with � =
p
2 log p

E[(f�(y)� ✓)2]  (2 log p+ 1)

⇢
1

p
+min(✓2, 1)

�
.

First note that f�(y) = y� sign(y)(|y|^ �), where a^ b is shorthand notation for min(a, b). It follows that

E[(f�(y)� ✓)2] = E[(y � ✓)2]� 2E[sign(y)(|y| ^ �)(y � ✓)] + E[y2 ^ �
2]

= 1� 2E[sign(y)(|y| ^ �)(y � ✓)] + E[y2 ^ �
2]

The expected value in the second term is equal to P(|y| < �), which is verified as follows.
The expectation can be split into integrals over four intervals, (1,�t], (�t, 0], (0, t], and (t,1). Each

integrand is a linear or quadratic function of y times the Gaussian density function. Let �(x) := 1p
2⇡
e
�x

2
/2

and �(x) be the cumulative distribution function of �(x), and consider the following indefinite Gaussian
integral forms:

Z
�(x) dx = �(x) , by definition of �,

Z
x�(x) dx =

1p
2⇡

Z
xe

�x
2
/2
dx = � 1p

2⇡

Z
e
u
du

| {z }
u=�x2/2

= � 1p
2⇡

e
u = ��(x) ,

Z
x
2
�(x) dx = �(x)� x�(x) .

The last form is verified as follows. Let u = x and dv = x�(x)dx. Then integration by parts
R
udv =

uv �
R
vdu and

R
x�(x)dx = ��(x) show that

Z
x
2
�(x) dx = x

Z
x�(x)dx�

Z Z
x�(x)dx = �x�(x) +

Z
�(x) = �(x)� x�(x) .

The Gaussian distribution we are considering has mean ✓ so the shifted integral forms below, which follow
immediately from the derviations above by variable substitution, will be used in our analysis:

(i)
R
�(x� ✓)dx = �(x� ✓)

(ii)
R
x�(x� ✓)dx = ✓�(x� ✓)� �(x� ✓)

(iii)
R
x
2
�(x� ✓)dx = (1 + ✓

2)�(x� ✓)� (x+ ✓)�(x� ✓)
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Using these forms we compute

E[sign(x)(|x| ^ �)(x� ✓)] =

Z 1

�1
sign(x)(|x| ^ �)(x� ✓)�(x� ✓) dx

=

Z ��

�1
��(x� ✓)�(x� ✓) dx

| {z }
��(���✓)

�
Z 0

��

x(x� ✓)�(x� ✓)dx

| {z }
�(�✓)��(���✓)���(���✓)

+

Z
�

0
x(x� ✓)�(x� ✓)dx

| {z }
�(��✓)��(�✓)���(��✓)

+

Z 1

�

�(x� ✓)�(x� ✓)dx
| {z }

��(��✓)

= �(�� ✓)� �(��� ✓) = P(|x| < �)

So we have shown that

E[(f�(x)� ✓)2] = 1� 2P(|x| < �) + E[x2 ^ �
2]

Note first that since x
2 ^ �

2  �
2 we have

E[(f�(x)� ✓)2]  1 + �
2 = 1 + 2 log p < (2 log p+ 1)(1/p+ 1) .

On the other hand, since x
2 ^ �

2  x
2 we also have

E[(f�(x)� ✓)2]  1� 2P(|x| < �) + ✓
2 + 1 = 2(1� P(|x| < �)) + ✓

2 = 2P(|x| � �) + ✓
2
.

The proof will be finished if we show that

2P(|x| � �)  (2 log p+ 1)/p+ (2 log p)✓2 .

Define g(✓) := 2P(|x| � �) and note that g is symmetric about 0. Using a Taylor’s series with remainder
we have

g(✓)  g(0) +
1

2
sup |g00|✓2 ,

where g
00 is the second derivative of g. Note that g(✓) = 2 [1� P(z  �� ✓) + P(z  ��� ✓)], where

z ⇠ N (0, 1). Using the Gaussian tail bound P(z > �)  1
2e

��
2
/2 and plugging in � =

p
2 log p we

obtain g(0)  2/p. Note that g0(✓) = 2[�(� � ✓) � �(�� � ✓)] and g
0(0) = 0. The integral (ii)

above shows that the derivative of �(� � ✓) with respect to ✓ is equal to (� � ✓)�(� � ✓). So we have
g
00(✓) = 2[(� � ✓)�(� � ✓) + (�� � ✓)�(�� � ✓)]. It is easy to verify that |g00(✓)| < 1. To simplify the

final bound, note that 4 log p > 1 if p � 2, so it follows that sup✓ g00(✓) < 4 log p for all p � 2. 2


